Regulatory approval of digital outcome : Experience in Duchenne, and first step in MS

Margaux Poleur, Alexis Tricot, Damien Eggenspieler, Dimitri Lozeve, Alexandra Goodyear, Paul Strijbos, Laurent Servais

Laurent Servais, MD, PhD laurent.servais@paediatrics.ox.ac.uk

Clinical Gold Standard → New Biomarker Qualification

Major challenges of current state (1)

All measures performed in the hospital, it remains a single point assessment, and highly dependent on patient's form and motivation

Background

Clinical Gold Standard → New Biomarker Qualification

Major challenges of current state (3)

Patients with rare disease may travel a lot to access the research center

To evaluate patients with wearable devices is just the sense of History. The only question that remains is how long we need to undestand that it is a much more robust solution than hospital-based assessments

The Rapid Evolution of Digital Endpoints: Are We Headed in the Right Direction?

The number of unique digital endpoints being used in industrysponsored trials of new medical products is skyrocketing, but is more always better?

Jennifer Goldsack Follow

y in f 🗆

Just over a year ago, we launched our <u>crowdsourced library of digital</u> <u>endpoints</u>, aiming to shine a light on digital measures being used in industry-sponsored trials and galvanize the field around specific measures to speed adoption. During our most recent update of the library, we were struck by the astronomical growth of digital endpoints over such a short time span.

Let the numbers speak for themselves:

• The number of **unique digital endpoints** increased from **34 to 166 in the last 14 months**, and the number of **sponsors** actively collecting digital endpoints in clinical trials of their medical products has **increased from 12 to 52**.

FDA U.S. FOOD & DRUG

- Home / Medical Devices / Digital Health Center of Excellence

Digital Health Center of Excellence

f Share 🕑 Tweet in Linkedin 🔤 Email 🕰 Print

Our goal: Empower stakeholders to advance health care by fostering responsible and

So why are wearable devices not more used as primary outcome ??

Being able to identify all the movements of the

And then to quantify them precisely 💿 😳

In uncontrolled environement

During 2 years, without shift over this time

Internet transmission and data security... Be compliant !! (1) (1)

What do you mean exactly Are you sure the moon is not enough ? 🤪 🤪 🦃

I will offer you the moon....

The doctor

The engineer

The long and winding road of SV95C

Technical development timeline

DMD add on value

2019

26 April 2019 EMA/CHMP/SAWP/178058/2019 Committee for Medicinal Products for Human Use (CHMP)

Qualification opinion on stride velocity 95th centile as a secondary endpoint in Duchenne Muscular Dystrophy measured by a valid and suitable wearable device*

Draft agreed by Scientific Advice Working Party	12 April 2018
Adopted by CHMP for release for consultation	26 April 2018
Start of public consultation	21 September 2018
End of consultation (deadline for comments)	30 November 2018
Adopted by CHMP	26 April 2019

Keywords	Activity monitor, Duchenne Muscular Dystrophy (DMD), Real World Data, Stride
	Velocity, Ambulation

2023

20 February 2023

Case No.: EMA/SA/0000083386

Committee for Medicinal Products for Human Use (CHMP)

Draft Qualification Opinion for Stride velocity 95th centile as primary endpoint in studies in ambulatory Duchenne Muscular Dystrophy studies

Draft agreed by Scientific Advice Working Party (SAWP)	01 September 2022
Adopted by CHMP for release for consultation	15 September 2022 ¹
Start of public consultation	28 February 2023 ²
End of consultation (deadline for comments)	10 April 2023

Comments should be provided using this <u>template</u>. The completed comments form should be sent to <u>ScientificAdvice@ema.europa.eu</u>

Keywords	Qualification of Novel Methodology, Duchenne Muscular Dystrophy studies,
	Digital Health Technology, efficacy endpoint, wearable sensor

Extension to other diseases... ALS

⊘

The SV95C is a very robust outcome, because does rely less on motivation & patient environment

Extension to other diseases... ALS

With the SV95C, we need 20 times less ALS patients to power a clinical trial compared to traditional gold standard

 $\mathbf{\mathbf{O}}$

ActiMS : one project, two study protocols Controlled environment Non-controlled environment Aim : Feasibility to assess MS real life function & Aim: **Analytical** validity early sign of endpoint *clinical validity* Validate stride algorithms in this context of use & patient Evaluation of non specific measures (95SVC, walking population: perimeter): **Stride detection** is specific & selective Concurrent validity Stride reconstruction is precise & accurate Robustness Measure sensitivity to change Elaborate additional capabilities: Establishing disease agnostics measure (eg spasiticity, suitable algorithms for specific MS clinical ataxia, etc. in real-life) manifestations (ataxia, spasiticity, asymmetry). 1st results

Population

Gait lab (Motion capture set up : 12 cameras, various heights and orientations, total recording space = 7×3 m)

exercices:

- Confortable 120m walk
- 120m walk with double task (listing unique animals names)
- Fastest 25ft walk (performed twice)
- 3 * 180° turns while walking at a normal pace
- 7m fast walk, 3m normal walk, 7m run

Results

Over 99% of strides identified using the Motion Capture were accurately detected by the IMU device (99% recall), and measured with a centimetric precision (< 3% error on the stride length). There was no significant impact of the level of disability on the error.

ACTIMS: noncontrolled environment

Compliance

On 49 recording period, 45 include enough data for analysis : **91% compliance**

19 patients have completed so far the 1 year data

Analytical plan

1. Reliability

2. Validity

3. Longitudinal evolution

1. Reliability

	ICC	SEM	Avg
nb_strides_per_hour	0.93	24	181
distance_per_hour	0.93	23	169
stride_velocity_95	0.99	0.03	1,44
stride length_95	0.99	0.02	1,46
stance_percentage_median	0.97	0.66	64,4
stance_duration_median	0.97	0.03	0,76
walked_distance_90	0.78	13	50,9
swing_duration_median	0.93	0,01	0,42
Benchmark – sv95c on DMD patients from dossier	0.94	0,07	

- → All variables demonstrate a good stability, at the exception of walked distance (90th percentile). Results will be refined with other percentiles in clinical validation phase (e.g., ICC of median is higher)
- → Results include 2 outliers (patients 01-002 and 01-031) with relatively high variability. An analysis with clinicians is ongoing to understand how to interpret this data in the results

Internal reliability evaluation

ICC : Intra-Class Correlation, computed on two periods formed by the two halves of the first recording period for each patient. Ability to autocorrelate.

SEM : standard error measurement, computed using standard deviation & ICC

1.00 0.85 0.70 ICC

2. Discriminant Validity

Mann Whitney test

stance_percentage_median -

stance_duration_median -

swing_duration_median -

→ Differences between MS patients & controls are statistically significant

2. Convergent Validity

	Correlation coeff. (Spearman)		
	EDSS	T25FW	6MWT
nb_strides_per_hour	-0.348	-0.45	0.630
distance_per_hour	-0.493	-0.51	0.744
stride_velocity_95	-0.474	-0.62	0.814
stride length_95	-0.510	-0.599	0.731
stance_percentage_median	0.402	0.507	-0.738
stance_duration_median	0.278	0.628	-0.755
walked_distance_90	-0.536	-0.546	0.720
swing_duration_median	-0.176	-0.149	-0.040
Benchmark – sv95c on DMD patients			0.68

p-value <0.01

→ Moderate but significant correlation observed between EDSS/T25FW and SV95C, SL95C & median stance duration

2. Convergent Validity

> Correlation of stride length with EDSS consistent with current litterature

Correlation between digital and gold standard variable (*p<0.05, **p<0.01)

3. Sensitivity to change ?

Yearly change of SV95C (%)

Next step

- Patients' follow-up and longitudinal data collection
 - Study extension
- Analysis of the completed baseline and lingitudinal data :
 - Algorithms development and validation
 - Identification of « best outcome ... or portfolio of outcome

The Liege CRMN Team

Olivier Schneider Manon Fabian dal Farra Laurane Mackels

Manon Duclos

Taura Buscemi

Charline Dubois Medard

Margaux Poleur

Stephanie Delstanche

Aurore

Daron

